26 research outputs found

    Architectural Refinement in HETS

    Get PDF
    The main objective of this work is to bring a number of improvements to the Heterogeneous Tool Set HETS, both from a theoretical and an implementation point of view. In the first part of the thesis we present a number of recent extensions of the tool, among which declarative specifications of logics, generalized theoroidal comorphisms, heterogeneous colimits and integration of the logic of the term rewriting system Maude. In the second part we concentrate on the CASL architectural refinement language, that we equip with a notion of refinement tree and with calculi for checking correctness and consistency of refinements. Soundness and completeness of these calculi is also investigated. Finally, we present the integration of the VSE refinement method in HETS as an institution comorphism. Thus, the proof manangement component of HETS remains unmodified

    Proof Support for Common Logic

    Get PDF
    We present an extension of the Heterogeneous Tool Set HETS that enables proof support for Common Logic. This is achieved via logic translations that relate Common Logic and some of its sublogics to already supported logics and automated theorem proving systems. We thus provide the first full theorem proving support for Common Logic, including the possibility of verifying meta-theoretical relationships between Common Logic theories

    Computational Invention of Cadences and Chord Progressions by Conceptual Chord-blending

    Get PDF
    We present a computational framework for chord invention based on a cognitive-theoretic perspective on conceptual blending. The framework builds on algebraic specifications, and solves two musicological problems. It automatically finds transitions between chord progressions of different keys or idioms, and it substitutes chords in a chord progression by other chords of a similar function, as a means to create novel variations. The approach is demonstrated with several examples where jazz cadences are invented by blending chords in cadences from earlier idioms, and where novel chord progressions are generated by inventing transition chords.Project COINVENT/ European Commission FP7 - 611553Peer reviewe

    Architektur-Verfeinerung in HETS

    No full text
    The main objective of this work is to bring a number of improvements to the Heterogeneous Tool Set HETS, both from a theoretical and an implementation point of view. In the first part of the thesis we present a number of recent extensions of the tool, among which declarative specifications of logics, generalized theoroidal comorphisms, heterogeneous colimits and integration of the logic of the term rewriting system Maude. In the second part we concentrate on the CASL architectural refinement language, that we equip with a notion of refinement tree and with calculi for checking correctness and consistency of refinements. Soundness and completeness of these calculi is also investigated. Finally, we present the integration of the VSE refinement method in HETS as an institution comorphism. Thus, the proof manangement component of HETS remains unmodified

    Hybridisation of Institutions in HETS (Tool Paper)

    No full text
    We present a tool for the specification and verification of reconfigurable systems. The foundation of the tool is provided by a generic method, called hybridisation of institutions, of extending an arbitrary base institution with features characteristic to hybrid logic, both at the syntactic and the semantic level. Automated proof support for hybridised institutions is obtained via a generic lifting of encodings to first-order logic from the base institution to the hybridised institution. We describe how hybridisation and lifting of encodings to first-order logic are implemented in an extension of the Heterogeneous Tool Set in their full generality. We illustrate the formalism thus obtained with the specification and verification of an autonomous car driving system for highways

    Heterogeneous colimits

    No full text
    Colimits are a useful tool for the combination of specifications and logical theories. We generalize the notion of colimit to a heterogeneous multi-logic setting. For practically realistic cases, the notion has to be weakened. We describe an algorithm that approximates the weaker notion but obtains a colimit whenever possible. This algorithm is being implemented as part of the Heterogeneous Tool Set HETS
    corecore